Archive
2014
January
February
March
April
May
June
July
August
2013
January
February
March
April
May
June
July
August
September
October
November
December
2012
January
February
March
April
May
June
July
August
September
October
November
December
2011
January
February
March
April
May
June
July
August
September
October
November
December
2010
January
February
March
April
May
June
July
August
September
October
November
December
2009
January
February
March
April
May
June
July
August
September
October
November
December
2008
January
February
March
April
May
June
July
August
September
October
November
December
2007
January
February
March
April
May
June
July
August
September
October
November
December
2006
March
April
May
June
July
August
September
October
November
December
Mar. 17, 2014

What's the Cosmic Microwave Background?

by Julie Leibach

Click to enlarge images
Today, researchers announced the first direct evidence for cosmic inflation—the idea that, less than a second after the Big Bang, the universe blew up like a balloon in a process of exponential expansion. The evidence comes from patterns detected by a telescope called BICEP2 in the cosmic microwave background, or CMB.
 
The CMB is light that was released 300,000-400,000 years after the Big Bang, and it’s the oldest light that we can detect in the universe. “The fact that there is a CMB is one of the great pieces of evidence for the Big Bang,” says Duncan Hanson, a cosmologist at McGill University and the lead author of a study published last year describing patterns found in the CMB.
 
Here’s how cosmologists think the CMB came to be:   
 
The early universe was a piping hot, opaque “soup” of particles, according to Clarence Chang, a scientist at Argonne National Laboratory who helped build the South Pole Telescope, another telescope that studies the CMB. As it cooled and further expanded over time, the universe coalesced into a plasma consisting of more familiar ingredients, including protons and electrons. These charged particles constantly scattered photons as polarized light, which was trapped in the plasma like sunbeams lost in fog.
 
As the universe continued cooling, the charged particles found each other, forming neutral atoms less prone to scattering photons. Liberated, that early light—what we now call the CMB—could travel freely through space, and as it did, it stretched to wavelengths associated with very cold temperatures that highly sensitive telescopes can detect. By studying patterns in the CMB polarization, researchers can learn more about the origin and makeup of the big black yonder.
 
For instance, as the CMB radiation travels toward us, it experiences gravitational tugs from bodies of mass that warp its path. That tugging, called gravitational lensing, creates a pattern in the CMB’s polarization called B-mode.
 
But B-mode polarization can also result from a different phenomenon—what’s called primordial gravity waves. Cosmologists theorize that these waves formed as a result of quantum mechanical fluctuations during inflation. Detecting the imprint of gravity waves on the CMB polarization amounts to finding “the first tremors” of the Big Bang, according to Hanson—and that’s exactly what researchers using BICEP2 observed. For more on the discovery, tune in to this SciFri segment from March 21, 2014.
 
RELATED SCIENCE FRIDAY LINK
About Julie Leibach

Julie is the managing editor of ScienceFriday.com. She is a huge fan of sleep and chocolate. Follow her @julieleibach.

The views expressed are those of the author and are not necessarily those of Science Friday.

Science Friday® is produced by the Science Friday Initiative, a 501(c)(3) nonprofit organization.

Science Friday® and SciFri® are registered service marks of Science Friday, Inc. Site design by Pentagram; engineering by Mediapolis.

 

topics